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1 Introduction

One of the most important roles of the early human visual system is the extraction of the three--

dimensional (3-D) structure of surfaces (Marr, 1982). It has been proposed that the system deals

with this task through different modules, each analyzing a different type of image information.
One of the most important of these modules is the one that recovers the 3-D shape of objects from
their motion cues. Indeed humans are capable of recovering structure from motion, under both
orthographic and perspective projection, and in the absence of all other cues to 3-D structure (for
examples of the early work see Wallach and O'Connell, 1953; Gibson and Gibson, 1957; White and

SMueser, 1960; Green, 1961; Braunstein, 1962; Johansson, 1964; for a review of the psychophysical
literature see liildreth, Inada, Grzywacz and Adelson, 1987).

The problem of the recovery of structure from motion is underconstrained because the

image information available in the retina is two-dimensional (2-D), and therefore, not enough to
d,,termine the 3-D shape of the visual world. To solve this problem, Ullman (1979) proposed that

the human visual system uses assumptions about the world, such as rigidity of objects, to constrain

the solution. His ideas led to a large body of computational work testing the validity of different

assumptions directed to solve the structure from motion problem (for examples of the early work

see Ullman, 1979; Clocksin, 1980; Prazdny, 1980; Longuet-Higgins, 1981; Longuet-Higgins and
Prazlny, 1981; Tsai and Iluang, 1981; for a review of the computational literature see Grzywacz

and llildreth, 1987).

Ullmnan used psychophysical data to argue that the process is divided into two stages.

The first is solving the so-called correspondence problem, which consists of matching tokens, such
as points or straight lines, between different image frames (see explanation below), lie suggested
that once this matching is done the second stage assumes rigidity of the object's structure in order

to recover its 3-D shape. (Later, Ullman relaxed the assumption of rigidity in favor of a scheme in
which the transformations of structure from frame to frame would be as rigid as possible, although
iot, strictly rigid; UIlman, 19841.)

It is not necessary to postulate a solution of the structure from motion problem in

terms of isolated features. In fact, optical flow approaches to the problem have been suggested
(e.g. Prazdny, 1980; Longuet Iliggins and Prazdny, 1981; lioffman, 1982; Waxman and Ullman.
1985). There are reasons, however, to consider feature-based schemes. The main reason is thai
the optical flow field (a 2-1) field that can be associated with the variation of the image brightness

pattern) and the 2 1) motion field (the projection on the image plane of the 3- ) velocity field of a
inovirig scene), r,'elY coi r(cide. For some analytic nmodels of surface reflectance this can he proveii

(V,'rri a id Poggio, 1986). The prolemo stems from the fact that image brightness patterns and

Ih,,ir changes (o not (oirres pond directly to phYsical entities awl their motion (Ullman, 1979). Not
sirprisiiigly. howevver, it tu ris out from Verri and Pogglo's work, that the optical flow and motion

iold n,,arly coinucide at brightnfess edges and thus at the most elementary type of features.

Aniother reason to consider the feature based schemes is that a reliable recovery of
struct ire from motion seenis to require, a simultaneous inspect ion of image frames that have large

svp;,rations in fi re (Wallach and O'Connell, 1953; Wlhite and 1mlueser, 1960; Green, 1961: Brauni
.,,I.ill a1id nelidvr ii, 1981 ; )oner, I,appili awil Perfetto, 1981: Adriersen and Siegel, 1986: Hraun-
siei ,llpfmari . Shapiro. A idprsen aid lHeiitt, 1986; lildreli et al., 1987, (;rzvwacz, Jljldreth,

. .......:_ ... .



Inada aiid Adelson, 1987). '['his requiremniit brings back the corre-spii(ieri fit. ler i I il-d

above. Ini simple words, this is the problem of inatchinrg parts iii diflereiit Mia-vg fia rne, it It Ill1.1

* matched primitives correspond to the same features in the viewed object.

'L'he human visual systemn is able to solve the correspondence, prl~bdiii oeii wh' 1It,,
motion is presented in discrete frames which have large separationis in time. TFitis is t lie phIeni neIc1'111
of long- range apparent motion. (Two d is tinct processes for the nieasiirenie It of iiot ion soonr Ir~. If Jt
in the human visual system (Braddick, 197-1, 1980), one healing V. i Ith large separatl ins ill sp;lc w!.

* ~time, the long-range motion process, and] (lie other (lealhinrg wit l itaU.l i .ci.t h hor rali

- motion process.) Apparent mnot ion has been studied extenisivel'y ill I1lie, psv liojflsical lit era iiirt'

(see, for example, Wertheimer, 1912; IKorte, 1915: holers. I UJ- :\t I rIe jw. B; raddilick. I

-. ~UllIman, 1979; Anstis, 1980; G reen, 198:3, 1986; MIUtChI, Smit h a fl( \otas. I 913: R aniach a ndlrai

amid Anrstis, 198:3, a,b,c, 1985; Anrstis anid Mat her. 1985; MIather. C ava nagh i a 1(] AnlisS.

Ramacliandran, 1985; AnsI is anrd Rainachaid ran, 19861; CGreen anid Od on. M)4i: koli ( nlli l ii
* I ~986i; Grzywacz, 1986, 1987; Prazdrny, 1986; Ramachand ran. Iriada andl( 1Kianmi 9h WI n

1986; Finlay and Dodwell, 1987).

Ullmnan (1979) proposed a compljutIational t heory for ap parn ner rol i, whIiich lie cil led

tie Minimnal Alapping Theory. Minimal mapping is Ihle process by which feat ures fit a given fraite

are nat died to feat ures in another frame such that thle sii of th lie i tanrces I raivehed i., Iliiil ral
- ~~(For jisychiophysical evidence su pporting minimial ma pping as anl i rport ant faictofr ill a jija etil ito-

* ~~~i un see UllImain. 1979; Williams and Sekuler, 198.1: Greeni artd Odomn . 19i. ) lii is I lie r. ro
hienefore, to solve the correspondence p~robleml through thle iiiiizaltion of a cost fii lid ii in . (11owN

ever. nocte that st rictly speaking Ullmnan's theory does riot recj iiiine O fi n~ifizia If([ iif hlio niif it

Eu iclidiami (listatices, but it allows for most abstract d istarnces suchi as di frereri I, )f orlintat fil cit

* ~bright ness of tie features. In this paper we consider only the Euclid ian version of thle theory.)

Iininirg the correct cost function, however. is only half thle problerin. \\o ried a hi1t ati
* in1ai ide etod of minimizing it. If the cost function is convex tihere exist ita iv. f.tt anid reliile

nitet hals for fininrg tie global mtiimutmr. For non-convex cost furli, icois -tI(), ieaii

trat egies like the Metropolis. (Metropolis, Rosenblu th . Ri s4iillh t Ii 'Iii len al( Iiul d r. 19.53 1)
ll- liwiilated annealing algonitlirs (Kirkpatrick, Cilatt arid \echi. IfPS3) \&il 1,111diu till,.

gldial rnitiirinm, hint reportedly take a long time to do so. (Fon ruilofaI of stochia~ti
* nroixat ott ntiithous in corriputatiorial vision see. Ballard, Ilinitort ;ridl Sivrui'., ki. ,1s 3; Ihititotli,;

SejiWoiwk., 19813: Certiari and (emmiari. 19.'1; Nlarroqii, 19Sl: htivkO and Schitltitt. 19"(. KLiii.
* Sjiiiiv~~sk in mtcon all(I Schirtaclier. 19861; C) bole amid kl icfiti lPi: Srn.Itt li

I 'Tm I u'l ilfl rtpogi ainiriig niotthod to solve th li'uljcili ir.an it hliilliwh
*II ihuik v, cu ivinged correct lv itI di d sc very slol m il (VI I nian iI. iisrm ti I en ii il .i ii

* alit lintihat always cornverge.-h theli right arisw('r 1t tial often1 h) 1i 114,11"T~iiVi'

a~grithutthi;tt converges toi iltitost the right answer roost 4)I Ili(, tnuew It ! ui iupi nj
i' 1 ulu,If, Ill teousf ceti'riniii.tic anialog networks iii innl 1,1i. , ;!i. ll '

ti. 1, 11 f ihu'-irrituistl t naf ~iiiu iit- I rks in i ontiiiitI ui u-ti. % \ ~ *: I

- ~~I l..~l.hilit;. l'tSi6: (rz.%vwi, Iich \ruilh. 1986: Hhill itchuimuii~~ IIIKil )I I~', \-.,~tuiumi

AIt i i irt ail v xn nt ple of floti hiltear ia' a . d r i l .



- t'' %k Ill 0p- 1in 1, 1 F 1 ilt w(it ()I rsistors, capacior andI ifdilictaflcos. itd whos

*'d.-[I* -it [\ .11 , q II Il* * i,,t -II'.h l* I id ices that tillepIlle it static nonlinearity. If this non-

hiTiarlt I-.1 -, ,i i ' 'FL? lit rilalIslip, similar to those implemented by synapses, then
Ihel it'I.%ul,,kk , . It, ,,'uldI i.i rk." (lopfiet. 1982. 1984; ttopfield and Tank, 1985) since
Its 1111- 1, . 1,. r.c.,t, .t- -,,iu1itisI i,,.. (if neurons. We empl.asize, however, that real nei-
*i,,n. Ir,, ,,Ii,:,LI'\ ,II ,, , t 1(11.1 l I ( I l Nirmann. 1958; Koch. lPoggio and Torre, 1982; Crill

S, K. Ii'. 1fi.t?,k tf. N) I,. and Martin. 19.1.I) and that the name "neural- network" is
L1 ".1 :1,1.1 (Pil% A, t.", II'll,I,,

('irrvtII. reil, iii, he m-i done to cnstruct electronical devices that implement such
net wrk,. If built. h,,v %%ill 4111r Cdh I uat ions extremely fast because of their parallel, analog
nat ur.. lIpIfield and Iak (1 S) have shown that these networks are capable of calculating good
approximlate solutions to (-(inplex minimization problems, such as the Traveling Salesman Problem.
Koch. Marroquii, and Yuill ( 19S6) successfully applied thetit to the surface interpolation problem
of early vision.

The present paper proposes and studies massively "neural -network" implementations
designed to solve the correspondence problem in apparent motion (where "massively" means that
vvery two ,lenletary units are itt ercon necte(l).

In Section 2 we describe a "neural-network" implementation of a version of the Minimal
Mapping Theory. In the same section we give examples of computer simulations of this implemen-
tation, and show that it accounts for the basic psychophysical apparent motion phenomenology.
This section also presents a demonstration of the speed of the "neural-network" implementation
and of the fact that even for very complex, nonrigid motion, a nearly optimal solution is obtained.
In Section 3 we prove theorems about the convergence of the network and show that for some
situations the systen will always lind the correct solution. In the same section we will discuss how
we chose the network parameters for our computer simulations.

Section 4 is directed to another question. It is natural to ask whether errors are caused
by dividing the structure from motion process into two stages; first solving the correspondence
problem and then using the correspondence information to recover the 3-D shape of objects. Both
processes are solved using different assumptions and it is possible that these conflict for some
stiituli. In this section we use the same mathematical formalism used in the preceding sections
to determine whether rigidity alone (the basic assumption used to recover the 3-D structure from
n11,?loll) is sufficient to solve the correspondence problem (and simultaneously the structure from
mot ion problem). Weshiow that further constraints are usually needed to obtain the correct answers.
This resl It gives a (omputational argument in favor of a division of the structure from motion
pr1' ess ii le alove two stages. We will also discuss a theory that combines the minimal mapping
aid rigidity assuntptions and is able to solve the correspondence and the structure from motion

2 The Minimal Mapping Theory for Apparent Motion

I .K icn will begilt with a formal introduction to tie Minimal Mapping Theory and propose
a "Irl twiwork" llnpithmtntati m (f this tho,-ory (Section 2.1). We then proceel to (elnonstrate



that this implementation simulates the basic apparent motion psychophysical phenorneno!ogy (St,,
tion 2.1.1), i.e. ambiguous and unambiguous 2-D motions, wagon -wheel type illusions, and tra,
parent and opaque 3-D motions. We also analyze the convergence tine of the nti N o k in rorqri ....
with the time constant of its basic units and discuss the quality of the solutiows o htaitiot. I hI
solutions are not strictly correct since the minimization procedure may bocome t rapped it lt ,I
minima. We show, however, that those solutions are near optimal. Our main result in this ,i i
is this: provided that the motion is sufficiently small, network parameters can be chosen stih 1 1i!
convergence to the optimal solution is guaranteed,

2.1 A Network Implementation

In the Minimal Mapping Theory (Ullman, 1979), the image of an object with N features is dcscril.,d
by the 2-D coordinates of point on the object, (zi(t), y,(t)), I = 1,.. N. .Let images be given
at two instants, t - bt and t, and let us begin by assuming that the number of features ill h,
two instants are identical. We now define a set of binary correspondence variables I'V, such that if
feature i in the first frame maps to feature a in the second frame then V' = 1, otherwise 1'l, = 0.
From the assumptions of the Minimal Mapping Theory we want to define a niatching cost function.
E.kA,, which is minimized only when the total distance traveled by the features is niniinal. W
follow Ullman and let:

EAMAI - >), (2.11
t

where,

di (. , )(2 2

To find the correspondence, the Minimal %lapping Theory proposes t, u)miniminize E.lf with respfc'
to 1,, requiring a bijective mapping, i.e. that all leat ures in the first frame are mnat( hed exactly to
one feature in the second frame.

In order to perform a fast mininiization we adapt in this paper a ollur l net work"
method proposed by lopfiel and 'lank I(1!) ,). Consider a s v it , wil I \.- mal like elei.ittal v
units symmetrically connected to each other. Each unit ..ill represei t a po.>ihi, corresoolence
between feature i at instant t - At and feature a at instant t.

We first define it new array of variables, [l W. which will rpi,-sent tHi, internial ,ollau ,,
of the "neural" units. These, are internal variables of the low probl,-i, mi! ha,, a momntinicail

ircrvasilig relationship to V, (which will represent the nitput ;,ft liese ullits):

1 T(2.

I -tt

2A I - I,,,
where A is a positiv,, paralin tir of the l)robleni. Altliough . N (,, c,,i ,,, Iro(1i 1 I I,
2A tlat I,, , s tilli bounded betweeln 0 and 1. We O ext 1 ,,I t, ( /I , o ~ fi, ,, to h, .. 1

2,.
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A N N N N N

,1=1Z Zl >1 l tz~a a~ >3>

t=1 a=1

N N

+2A7I ,00a) + 0 - Vi log(1

where A, B,(' and r are positive parameters of the problem. (We will informally identify each
of the terms of the right haid side of Eq. 2.5 by the parameter leading it.) Minimization of the
first comlpmnent of the A lerm forces each feature in the second frame to maintain correspondence
with as few features as possible in the first frame. (and vice versa for the second component).
SNI iiiiniization of the B term tends to force the total number of correspondences to be N. Thus the
terms A and B together will tend to force a one-to-one correspondence between features in the
two frames. The r terni is necessary to give a time constant for convergence of the network, as will
be seen below. Filnally, the parameter C serves to provide scaling for the physical dimensions, i.e.
if th1t image Of a given object is just an exJ)ansion of the image of another, then the network will
obtiili the same solutioni for tlie two objects, provided that C is scaled properly.

Perceptually, if the two iniage frames have a different number of features, say N, and
.1. usually splitting and fusion will take place, such that no feature will be left alone. It is easy

to ilicorporate this effect. into lie ergy function by substituting N in the B term of Eq. 2.5 by
M I x(NV N2 ). This was done for a few of our computer simulations.

Observe that if the IT,, variables are updated according to the differential equations:

dt OE I < i< N, I < a < N, (2.6)

then lhie system will stop in a point of the solution space in which the function E is at one of its

lillima. To see this, observe that because of the monotonicity between U'i, and V, expressed in

i'q. 2.3. th li iilate rule, Eq. 2.6, will telld to force Vi, to descend down the gradient of E. Note
that if A is large enough the variables Via will tend to be either 0 or 1 and thus, in spite of the fact
li ,t the search process is in a ontinuous space, it will tend to force a binary decision to determine
whilher ;i c,rrespoi(lence is to be established or not. In fact using the chain rule for differentiation

;1i1l Fq. 2.6 we fiiid

d_ O= _E1T; (2.7)

di s... OUia OVi Ovia"

1"rorn 1q. 2.1 wve calculdate

01/1, 2A

1-, (1 + C 2 1 7,2'
* C..*.

- * C % ~ * .t
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Therefore dE/dt < 0, which together with the fact that E > 0 proves that tle svstil will ,a( il

equilibrium, and in that situation E will be at a minimum. Technically Ibis na ri, tlii P, i, a

Liapunov function of the system (see also llopfield, 1984).

The solution of Eq. 2.6 can be implemented by a "neural-n ,,,rk". 'I, call :l11,
the symmetric connection strength, Tiajb, between unit i a and unit j b. and lie oxtorria l iupill

currents, I,, (data), we substitute Eq. 2.5 into Eq. 2.6:

dt A( OL + - 2V.) + B(N' - I) - ((d,, - -__

here we have introduced a new notation. V = Eta Vit. I , Z i,

Equation 2.9 is the equation of motion of the systen and was what we sinitdated iII the conlipu r.

Note that tOle ti re constant is T. That implies that the internal resistivi 'v arid capacitailce of lie

network units cani be set constant, equal to each other and independeit of Ithe problem to I)o solv,,t.

",,.,b is the contribution to the rate of change of IU, (the voltage of unit ( () v ,

(the output of unit j b) and can therefore be readily otbtained froin Eq. 2.9:

7
',tbj = -A( 6

.(1 - bi) + b,(l - bA))- B. (2.10)

Similarly Ii, is the contribution to the rate of chairge of U,. which is ini,'depla'iit of lie sliate ()

otier units:

I,, BN - ('d,,. (2.11

The .4 t erni in Eq. 2.10 represents inhibitory coliections witIi iiu eaci r, iw aid ah ,ii climn f[U.,r1

'lie 1 term in Eq. 2.10 represents a global inhibition between every pair of uiiis,. Therefore. ,overy

two units are mutually connected, with a total of N 4 -- N2 cnl mmctiils.

The B terni on Eq. 2.11 is the excitationl hias and i., e(uallly appli'd to o.very unlit. '

C tern in Eq. 2.11 is the inhihitory current through which th( da!,l ir r,) i,, d t,, I hI . Il'

larger the di., tlie more a feature would have to travel bettw'een place i, II l IIr fl'_li !,) pkit,

a in Oie second frane, arid the less favorable thiis cormictioi liild Iw. hlr, , r. intr, irirt, itii

is apjilivd to the corresponding "neural init".

It is important to note that in con trast wirll I WI li di I I l lk ' I , ,d for till
travvling salesman problem ( lopfield and Tank. H9%). thi, iLtn, ,-iii, u iv >, .l it, app, li,.ed

currents arid not as modifications of tlie colilectivilies lhli, ,i il 11nnt.

I t1 e fli ex t sectli ll we preseal ll Ile rvsllils, If )Ill C il1)llt I l i I' ., i l iii 1 Ii

-iitgrI; i l n of Eq. 2.9.

2.1.1 Computer Simulations

\e' ii nidau ted this nietwork on a S ,'vin h licsi tIt I.36 I'P 1i,,, hil, Ill il Liif, i . ,. q," I ltlt 1t
ti o titui/' the para eriter; J. Ii. C. r ;id A in anv mi-,''. (All hti h ft h . -i ll tiii +

ill this ip r, we took inlto a(colii t tile rules disci. ed l in S,, tIIu :T lli-fl.id \'' 1,4il1i4l 1ll;ot It ,-

svliipto ic hehiavior of t te sYst + was t li' samie lW. a klT.t' ri,' ' )' if 1InTl ii14 1,,1 \. l'w- fi'v. twll.?"
<, lta ni u~¢',and( th1al a given -,, of p~arai ,ter, vA m I u,,.' ,td t -1i+,+l1;illw,:- ,, ,1, l.,, . it, .. :

III

....................
. .,,". .
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,-.-.* a different nu inher of featiivrs. For all tle simulat ions reported in this paper (minlve r,,portd"-
otherwise) we used A = 10, 1 = 4 C = 1, r = I and A - 1, and the maximal distance
between features in ait object was always 1. Finally, we used homogeneous initial conditions for
our simulations. i.e.:

V1o(t =0) .= (2.11)

The first simulations showed that the network can correctly replicate apparent motion percepts.
Figure 1 illustiates the matching predicted for a 10 feature object rotating by 10'. (Our simulations
extended to objects containing up to 20 features.) In Fig. I) tlihe same object translates slightly.
In our figures the features in the first frame are always represented by squares and those in the
second frame by triangles. The labels for the features are maintained after the motion, so that the
expected values for the [1',,] matrix at equilibrium should be close t, 1 at the diagonal, and close.
to 0 off diagonal. The temporal evolution for this matrix in the rotation case of 1 ig. I is shown
in a 3- D plot in Fig. 2. (A similar temporal evolc.*ion wa.; obtained for the translation.) The
solid lines in Fig. 1. and in similar fignrs afterwards, indicat e lhe, slablished correspondences,
i.e. tle nIaximia of the [VW,, ] arrays. I hi durations of net work computation for this figure were
0.)ir and 0.0.15r for the rotation aid translation respectively. (\Ve potitt oli Ihat the dependence
oit t lie complexity of the problem. of the convergence time o f th, similatedl parallel network, is

different than that of the CPU time of the o tptiiitcr,. iii wtich the similation was performed. This

is because these computers were serial. Thus the ('PT t imes were irrelevant for our conclusions
- and were not nionitored.)

a b
5 "w

Figure I. The netovork natching predki ii , ftir ii tliii\mg ,,.lt t li teat tre:,  Ihe positions of the

c tmurm are re[)r,,etei ill t ilt frst fraiue ' v '1,lari aidt in ,+.l.* , Iil b\ I riantgkh, A pcific feature is
indic'ated by the Same incJex it) the I wo fraie,, ;Ai4 h. I l l .- ii itl i at. t itw c rre l)iniences vitahlished

I)v tie network. a 'I I t o)ject is r(ilate< hi.% t10 Ar,,un11 II It,, .I! ii a l- I 4iv .- l(iicii(e't the cen'ter of the

ritaliwi b The bl ject is translated t istheailal l 1 1t, l I ,, , , - i,d.l',+ it,, A,.ri- e..a li.ihed in both

I liu- are c p'iect l 1o he c4)rre l 1 wii Ih, .- i, Id ,, , 1, , I I4, . 'n al

_____ ____ _____ ___
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Note that thle correct correspondence was ob~tajined, i.e. the (liagolial tif Ie It- ray ['A% 1, was preleri I -'

Fig. 2 ). I ncorrect matches weesu ppressed to svverali order of iniguit i de( belt w I tec trect i

lin thle roitation caset, even for feature inmber 10. which by S Iiiple pi'X t1i.1 1tv iI piefer to 1;1
featu rus 1. 2 or 4(Fig. 1 ), the global consensus held at it( th1w corroc t ( )rues" p('nd cit \Aa:, 'II

4.Note in Fig. 2, that at t =0 the array is flatl, which jIInl~iate, I lie- lack of pr'fertilc(,I)
anit'y particular correspondence. Afterwards. a coimpetititon bet well! lie -of-respimdetiwvs I" Ifiti-i

molittl I Ie( (liagonlal is preferedl (t1 0.0037-5T,0.0075.(l.015T )III\~ altflr I his diligJlial Is !1(,(11
t lie, la.st false matches are etli niti a t( ft 0t.0)37, f (0.067

aV 10  Or to 0 O0375T-

a'W,

.p. f

Ia u1~v

I vlt ilwlloilplf o t e tfie e olm l o,-i crr~ on ,i -! ;t > i, r C( o a ,i
I~~ ~ ~~~~ ~ ~ ~ ~ ~ IV ltts i ra h .to1, x, e rs-iHt,'-w i h r~c( o iI ;i

IIIF r an i axi ro~ grp s. ii t xe eresent t..otue dcv : h firii awl' t raiit. rie g t\,iii I li- tmw wi

(miipwiation f"or tie arravs are, thi.pliti-~ ,i Hite tipper rlght itrir Iit eI tviipi 1i. ii tif,.-

the corr-p.toiidvne fouind li 1- i I i'.illustrated here Iy he irneo ~ar I,. t~t;Itp

iotlit rfiiltf 4ititerosT iii I iii'.. I ant 2 i'. that Ill, tip -f III oii' rin 'iwt.ti dil,,

Oti' iuti it f thepv ( iti tary l i lt s f ti n etwi pro thi . t ii, , (( 1> 11 -i tI.! i Y.1-I '

wi(i fr i 0 if r I a) ti h-,- c I' f \ . in a pproach Ii tIli~ \. Iii' i It 11~

* ~ ~ ~ ~ ~ ~ ~ ~ ~ " .jj~ fn .i l v' it tp. hr't ifu 0at -- 1 ' . Oit 111 1 114 ;ii\ l t

ii. f IP- i i \I I i '. t n ii, . i -- f I i . ip.
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I ht the convergence ofthe svs1zI'i Was faSter than the t6i1ie costat of the'0 , oeiptarv unit' ul/i'all

that the variables V'i, can pass the threshold criterion very fast, although technically they will reach

equilibrium only after a time constant or so had elapsed. At any rate. (he time of convergence of tie,

s'steim is limited only by r, and can be very short. In all the figures in this paper the Coillrgenc',

ti! 'ie was much shorter than T.

The example of Fig. I is such that the extent of motion is small. Ill Section 3. wi,

prove a tieorein whichI states that for short motions a choice of parimieters cin be iado such thi,

a i(mvergence to the correct solution is guaranteed. 'I'lie result in Fig. I confirms this theoren.

Not onlv for small motions, however, does the network Sirnulate psychoplhysical per-

cept>. Itl the case of large rotations, for example. perceptual illusions often occur. This is hecause

in these situations, features can travel large distances, and may approach positions in the second

frame that originally were occupied by other features. Such ait example is the wagon -wheel illusion.

a well known motion picture effect, in which a spoked wagon wheel seems to rotate in tIhe (,rection

opposi te to its real sense of rotation. This illusion is also obtained by' the network, and is illusli rated

in Fig. 3. Ill this example, eight features disposed in the corners ofa perfect octagon rotate 1101-5'

iii o1e1 case ( Fig. 3a) aill( 33045 ' in another case (Fig. 3.b). The 3 I) plot of the mal ricPs [1,] at

lie (onvergence IliRe are showii ill F: ig. 3c anld 3d for Figs. 3a and 31) respectively. The con vergence
time for this figure was 0.02T.

The wagon wheel illusioi is established by the incorrect correspondences that happen

in the large rotation. (Instead of the diagonal, a rotation permutation of the array [ ,,] was
selected. Once again, tilie incorre(t mlatchlies were suppressed by many orders of magnitude.

" 01 lihe network can also deal in a psychophysically appropriate way wit h ambiguous

-;it uations, i.e. cases of percept oa! metstahbilitv. An example of such a situation is shown in Fig.
1 and has been studied extensively in the psy 'ophysical literature (Von Schiller. 1933: Gengerelli.

H9IS; ha iachandran and Antis. 19,53, a.b.c: 1985). It consists of two features disposed at the
end of an iiagi nary rigid rod. 'FT," rod rotates at each now frame by 90' around its center. Ile

features i, tlie second frame are equidistant to each one of the featir,, in tihi, first frame. It follows

that a given feature in tlie first frame is equallv likely to match both featurv's in thn' secon i frame.

thu), givinig rise to a metastable situ.ation. hFile numerical value.s in the matrix [1*, ) at t ie itme (if

,)itivorg('leir are givenI iti fhe figu re. ''le time of ('(tverget(,, was I.(; < 10- r. and tle array dill

'iot chiaige oe'n after 107.

Tlwl' Inetastabilitv of the niotion displav i, expresseid l I li' fract iollal i,-ilts colipiit'd

lbv tie 'twiirk. Hlhis is possibl,'. icause the .ariatl's ar,' itot hiiary, i IH1 . 2.3). although ,ftcii 1itd

to 0I ,r I at 'quilibriii. i'ho ilit,rpr,'tation of these fvactimial results -lio ld h in piro hlilist ,

.rins: i.,. a given feature in the first frame has a probability ,h v., to (.7 of ialcing i, i'

1'.ait r' in the ,vcoil frami,,. Indeed, when noise interveTios in tie data to tlie int ko k. i., %inl

thi ' is a rali(loii modulatiii of the distance hetweell the feat ures. the sysli ,i lii i tii,'r (,4i\,'rg,'s

Sto 0..7. It rather, a oio' to one matching choice is made hv the network. I iiiallv. . piilit o-1t

that thli, s1iiii of tlie matching probabilities for a feature relportiuI hv Ilie ii'tl ,rk i- Ivh.s th ll 1.

iijc. all the l,, 0. 1975 < 0.5. This result is not a numerical artifact, as ii Setion . v.S ir,'3

;ia,! lv that I < N ( where I was defined in Eq. 2.9). \We' al-, prove in tOw, sait' . , ti ii.

Sh,, +,'r,' thlt a 1h(m , of Iii'twork p;iramet'ters (-all ho' mtad(,h st h thal 1 i> Ia ihitritil% <l i., it, A
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Figure 3. The wagon-wheel illusion. The symbols in Figs. a and b are the same as in Fig 1, anid the axe-

of Figs. c and d are the same as in Fig. 2. Anl object whos, features lie on the corners of a perfoct octagon
is rotated around the optic axis. The rotations were 110151 and 3304.1 in Figs. a andi b, reslecti, lv. The

established correspondence was correct f'or the small rotation hut incorrect for the large one; the rep~orted(

direction of rotation was reversed as is the case for humans. Figures c aiid d show the correspondence array

at the time of convergence for the small and large rotat ions respectively. TI'he illusion eorresponlls to the,

* ~ network converging to a diagonal form in the first case, hut! to a non-(liagoilai forni in the second case.

(In humans, if the visual display of Fig..1 is presented repeatelyv t he i)(crcelpt is eit h,,r

of ox~ciIlation or rotation depending on, the tem poral pa ra iieters of the sti il us (lIIaniac handrn i

and An ti, 198.3, a,b,c; I 985). However, the percept pied ictedl hy thle NIi ii ma Ma pp ing t h,,,,ry, a in

*thus by our network, is random from presentationi to pres,,itation. ii f'act, it raii he sh,, wil ii,,, -'-• .",-0

-;-;';";..;......?...; ;.....;..? x.. ;.. .. .. : :. :.>. '";" -.-,;. -3" -'..;.- - '''-..:..'"---'-- .i.-.i :"
i in
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[\~] 0.4975 CL97
(\0.4975 0.4975J)

Figure .1. An ambiguous situation. The symbols are the same as in Fig. 1. The two features of the first
frame are equally likely to match either feature of the second frame. The network deals with this problem
by converging to values that are neither 0 nor 1. For all of the previous examples the networks converged
to binary values. The matrix shown in the figure is the final value reached by the correspondence array. Its
values are close to 0.5, and therefore close to the probability that a particular match is made. For humans
such a display is bistable. The reason why the result is not exactly 0.5 is not a numerical artifact and is

explained in the text.)

the solution V1a z 0.5 is unstable, and any noise pushes the final values to 0 or 1. This discrepancy
between the predictions and the psychophysics is accounted by the Minimal Mapping Theory's
oiiission of information about the past motion of the features; see the Discussion section for more

0 details on the limitations of the Minimal Mapping Theory.)

.As pointed out in the introduction, Ullman (1979) suggested that the main role of
apparent motion is to serve as the first stage in the process of recovering the 3-D structure of
objects from their motion. It follows, therefore, that the apparent motion mechanism has to cope
with perceptual oddities due to 3-D motion, particularly nonrigidity in the image, and appearance
and disappearance of features due to occlusions. Figure 5 illustrates how the network deals with
these problems and shows that its solutions are similar to those of the visual system.

II the figure, a 3 Dimensional 5--feature object is rotated by 270 around an axis which is
petrpendicular to the viewing axis, and which belongs to the plane that divides the head between left

and right. Fronm a bird's eye view, the features of the object lie on the corners of a perfect pentagon
(Fig. 5a), and ;ar, pre.octted orthographically into the image plane. This projection is shown in
Figs. 5 1) and c under tlie assumption that the object is transparent and opaque respectively. In
tt' opaqu e case it is assuined that only the front features can be seen by the observer (see Fig.

.a,1).

In th tratisparent case all five features are seen, anii the r,,lative distance between

I"; ii Oin I li iriage change, because feattire iii difl'erent positious in the surface have differeit
vqtfci?,.s. Note in Fig. 51) that ithis image nTii gidity does not disturb the ability of the network

i() sotlve the correspondence problem. The conv(iergeilce time fo)r tfibs figure was 0.12r.

in t'he opaque case onlv three of the features are wn it the fir,,, fraire and two in

;I w miid . TIw ()Ither feaIturnts are ccluI(led )y tle surf;ac,. lh' nain l)roblhih(i that the network

l,", illthints ca.e is that the first framie has nore fe'aturs than th, ,,cnul . Perceptually this leads
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•"Figure5. Nonrigidity and the appearance and d isappea ratireof features a. A bird's ep-'vie wVof all oje,Ll

rotating by 27' around all axis perpendicular to the viewing axis and v,rlical ill relatiot to the head ,I

-'. I Ith observer (shown schematically in the figure). 'rhie features of file ob~ject lie oil the corners of a perfct'
': pe|ntagon b. Te object is assumed transparent. The correpondhences; are computed correctly, in spite. of'

lHie tinritidity of the image, i.e. features travel by differctit antloinits, c. The features are assumed to he,
'")t ,1, -;i t r Dire rof a i opaqule cylinder N ote t h at feat ure 2 a ppea rs in lie fi rsi fra m e, lIu t h , in th,,it .- ,,i jk-_l

" "~~~ Ili- so lu l hm i o f he netw ork i a l t-hb s th a t o f th e h u n i)an ) v isual syvsen i. a ll( features I and 2 fi ise in t 11w ,

'.i. 1"('P111l fraine,

t%



to t'usion, i.e. two features or more fror the first frame match one in e .cond (Xnlor,. 1972).

Ylhe network also obtained this solution (Fig. 5c, t = 0.1r) when N in Eq. 2.5 was substituted
by !,,aX as explained in Section 2. Note also, that the fusion obtained by the network had the
minimal mapping property, i.e. features tended to travel as little as possible. The same strategy
(i.e. substituting N by Nmax) leads to splitting, i.e. a feature in the first frame matches two or
more in the second, if the number of features in the second frame is larger than that of the first.
(This result is again similar to human perception; Kolers, 1972. Fusion and splitting, however.
have been shown to disappear if the knowledge of occlusion is present; Ramachandran and Anstis,
1983,b.)

We show in Section 3, that for short motions, the right parameters can be chosen, such
that the correct solution is obtained by the network. This seems to be the reason for the success of
the network in the simulation of perceptual data (Figs. 1-5). This fact does not imply, however,
that the network converges in general to the global minimum of the energy function given in Eq.
2.5. In fact we illustrate in Figs. 6 and 7 that for random motions an incorrect matching may be
found. We also show, however, that even if the correspondence is incorrectly established, it is near
optimal.

For Fig. 6 a computational experiment with 450 runs was done. For each run the first
and second frame consisted of two objects of 6 features each, randomly placed in a disc of radius
1. The correct match, i.e. the one that minimizes the total distance traveled by the features, was
established by exhaustive search. The network was then applied for the 450 runs and the number of
cases that fell in each of the following four categories was observed: 1. correct answers, 2. incorrect
answers but one-to-one matching, 3. lack of one-to-one matching but six matches, and 4. less than
six matches. The frequency histogram is shown in Fig. 6.

Note that a one-to-one mapping was always established (and consequently the number
of matches was always six). In this experiment, however, only 58.4% of the solutions computed by
the network corresponded to minimal mapping.

In the other 41.6% of the cases, an incorrect answer was found. These incorrect solu-
tions, however, were near optimal as seen in Fig. 7. Four motions for which a incorrect mapping
was established are displayed in Figs. 7 a-d. In these figures the correct matches, as found by
exhaustive search, are marked by the dotted lines, and the predictions of the network are marked
by the solid lines. Note that the solutions found by the network were almost identical to the optimal
ones, and the errors were each time the switching of only one pair of correspondences.

The histograms in Figs. 7, e-h, correspond to Figs. 7, a-d, respectively. They plot
the distribution of the total distance traveled by the features, for the 6! = 720 possible cases of
one to one matching. The arrows in these histograms show the total distance traveled for the
answer given by the network. Note that as predicted by Figs. 7 a- d, the network results fell in
near optimal positions, i.e. many standard deviations away from the mean of the distribution.

Another fact of interest related to the experiment in Fig. 6, and which may provide a
psycliophysicallv testable l)rediction for such types of networks, is that tile time of convergence is
rnuch longer oil average for incorrect matches than it is for correct ones. In fact, for the last 150
runs of Hie experillent in Fig. 6, the mean time of convergence for cases where correct matches
wre predited was 0.1(r ± 0.001r (standard error), and tle mean lirme for the incorrect cases was
0.366-, f 0.013r. Vrrors are due to a (:conflict between the necessity for mninimmization of the total

-.'- -" . "-S '-' ,4
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CORRECT LES S ATHANEMATCHING L-- I ACE

ONE-TO-ONE ONE-TO-ONE
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(INCORRECT) (SIX MATCHES)

Figure 6. A frequency histogramn for correct vs. incorrect miatchings. For 4.50 runs the first and the second

frames consisted of two random objects of six features each (the featutres were raiidonil placed onl a disc
of radius 1). The first colurrii corresponds to thle cases where a true minimal mapping was found by the
network, i.e. the sum of the distances traveled by the features is miinimnal as verified Ily anl XlalJ.stive
search. The second column corresponds to the cases %~here the minimal maptping was not found by f li
network, but a one-to-one matching was still made. T[here was not any ca-w where a one( to one iliatcli
failed to appear (third and four-th columns of the iit ogramn). '[bus, tile correct soltion is not alw~ays

dIistanice traveled amid tile necessity for one- to -one( inatc ling. Th lese conflicts often canso a dela 'v ir

lhe decision process of the network. In Fig. 8 we illstrate this fact for the paradiigm of Fig. 7 d.

Siniilarl.x to Fig. 2, we show the temiporal evolution for t he [1 I] rrI .

Note that at t I 0.06r, the values of V3. and V~1 begin It) 10,(' ii11i;11 IL11i b1NIi

proximtity of feature 3 in the first frariiie to features 2 anid 3:in~ the second fraitic (see ig. 7d).
(iven the imposition of one- to -one ma tchles, this leads to a sli comipetit ion bet ween V, and I
0 0. 12r, 0.2.Ir). In the ineantimiethe vailtes of V2 1 , V1,; and V1~ raiseil andl coiivergedI 1, 1;t

;iboiit I =0.24r. Fromn tme exhaustive .s4;IflrI ve folijid Ilhut thle (4Jtilliil .,ollitll iliil' 1,

%4 *~
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-I igi,,re, 7. Near o)tiiiai iconipi)o tationls by the nietwot'k, a -d. The four cases were taken from the experiment

done in Fig. 6, and show examl)Ies where minimal imippimg was not found by the network. The symbols
ar sinilar to those of Fig. I The dotted lims represent the correct mininial mapping as found by an

exhaustivo' search. The mistakes immade by the network were always the switching of only one pair of

corre. omdemces. e i correspond to a d respectively. These histograms show the distribution of the total

,, f ,, tr'aveled by the featumres for all of the possible cases of one to one mapping. The abscissa has

irkitrary scale (buit equal in all histograms). 'he hist ograms have the same area; 6! = 720 matching cases.

4 f.- ; ie,' ahe rows inmdicate tie total distance traveled for the solution obtaiimed by the network (in figures f and g

4 . thi A114,e was (onmita iie(l b)N the left most bin of the histogram ). In the cases where errors were malde, the
ol, i ,to was nevertieless nevar lptimiial.

S.
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Figure 8. How errors are made by the network. The figure shows the tine evolution of the correspondence
array for the example shown in Fig. 7 d. For an explanation of the details see Fig. 2. The mistake is ziade
because of the conflict between minimal mapping and one to-one matching. From a minimal inappiul
point of view, the matches V3 2 and V33 would be preferred. This, however, goe agai"st the one to one
matching requirement. While V32 and V33 compete, other matches, which are not ntxesarily correct fr,
a minimal mapping point of view, develop.

'[his was an mnipossible solution for the network after I = 0.2,1r, I)eca tI, 6o4 : I. It fo ()"(kd tI I

tie net work could not reach an optimal solution anymore and had set tl io a ie. ily opt iial ie,.

in which V32 ; 0 and V 1 2 Z V33 ; 1. The long time of convergence wa.s di,, to tlIe inalility of V,1

to rise due to the imposition of one-to-one matching and to the weak capacily of the ntwork to

increase VI2 because of the large distance between feat tire I in the first frame alm,! Ieat lre 2 it tIe

second.

The main reason for building an implementation of the Miimal Nl-,pini, llheory ii,

terms of "neilral networks" i, to obtain a fast coti vergence o( I io s li tim. I hi', wa, th' c-,-, 1,,

tle examples showed so far, in whichI the convergence happened in a fra ti it' , the l Ti, r Ittill

of the elementary iinits of the network. We now brin g ,vidnce h lh is, fii,, Pelsi-;> ,,,

when the number of features in motion increases. Itt order to din,'iitt:st , it %v we, tor riil all

experiment whose results are, plotted in the graph of Fig. 9. "<r each tit rv itt Ih,, rtph a1 few rim,

were performed. Vach run consisted of an object of a given lit oher of feii ir,, (rs.,i.-. (sa) ratdhnii1

pla<'o< on a disc of radius I. h'li ohject wa.,; identical itt thl first 1id ',CO<TI( flitt ;,,,, to, ,t r ,

that a correct solution woild be obtained. 'he ave',age tittie (f cOi vwrii.,,Ic,, al Ii, litt ti, '.-

e-:,re'e
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Figure 9. convergence time of the network vs. serial algorithms. The data points show the average time

of convergence (and standard error) of the network as a function of the number of object features. The

features were randomly positioned on a dis" of radius 1, and the image in the first and the second frame were

identical to guarantee a correct solution by tl'e network. The thick line is fit to the data and corresponds to

a power law (Eq. 2.12), with a power of about 0.52 The thin line is drawn for comparison and has a slope

of I. The (lashed line has the sante slope as the theoretically calculated worst-case time of convergence for

serial algorithms solving t lie same prohlen. Similar slopes were obtained for average times of convergence

for related algorithins (l,awer, lenstra, linnooy Kan and Shmoys, 1985.) The network dependence on the

tillruiher of features is mild and nimuch -weaker than s4,rial algorithms.

fs)r Iliese runs were nivasured (ord inate).

The results are )lotted in a log log scale in Fig. 9. The thick solid line shows the

r(CUlts of lie ,xperiment. 'I he fact that this curve was a straight line in a log log plot implies that

he dl' h'ileice ()f t lie con vergence timle, 1", ()1n the number of features, N, was a power law, i.e.

', -',* * %.- "; -. ", . % , .. ," ," ."."," - **- ,- ,' , ,-; ' ' ' "'- * . ',~ - . " " ". - a,-,. . " " , ". " .-- ".' . """. """ '
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where F and -y are positive constants. For comparison the thin solid li i ,,low, ;I i r,ar depr,:. I,,,.
(adjusted to be equal to the experiment for the two features case), i.e. " 1. N,iI hatl,,I

dependence of the solution obtained by the network is sublin(ar, In fact its power was al),t,!

-y = 0.52. (This means that from the point of view of discrete oplin0/at ion the netw(rk ntli,,
has a complexity of about 0(n'/ 2 ).) One sees, therefore, that the convergence t im, of th, 'ne'ril
network" scales weakly (square root) with the numher of featur,s in mo on.

The strength of this result is emphasized if one considers good serial algorith ms r, .0

the same problem. Mathematically, minimal mapping is a (1ts( ret optiiz,ll i'i l)roblem k itv. i,

as the linear assignmentt problem (Burkard, 1979). Some of the best serial algorithnis propoed
to solve this problem scaled with the third power of the number of features, (l)inic and Kronrait.
1969: Tomizawa, 1971), i.e. y = 3. (Once again, this implies that from the point of view of discret,
optimization these methods have a complexity of about 0(n 3 ).) The relatively strong depende ,,
of the serial methods are illustrated by the dashed line of Fig. 9. Note the much steeper slope of
the serial algorithms, compared to the network implementation. (There are not at the present tiu,.

as far as we know, studies of the complexities of other parallel solutions for the correspondence or
related problems. Therefore a comparison between our network with other parallel methods was
not possible.)

In conclusion we have shown evidence that the convergence time of the "neural
network" implementation of the Minimal Mapping Theory scales weakly with the number of fea mu m-s

in motion, and therefore, remains short even for cases with a large number of features. This is due
to the massive nature of the connectivity of the network, which allows information to travel at high
rates from unit to unit in the network.

In the next section we prove ",eoretical results related to the quality of convergenc, ,,f
the -'neural network" implementation of the Minimal Mapping Theory.

3 Theoretical results

llopfield and Tank (1985) demonstrated good solutions to the 'Traveling Salesman I P robleni for ii p

to thirty cities. It seems that for a larger number of cities the solutions become less, good ( IlopilvMl.
pers. comm.). We have reasons to believe that the network reported in this paper behaives sinili, dv.

Our problem, however, is different in an important aspect. Th(, size of I le d,'s del nd oil I hw
'ime between matched image frames. We prove this theorem: provided that thc, xtenl of mot io,
is ;ufficiently small the network will always obtain the correct match. Therefore. an IncrPease ill t le

itumer of features to be matdhed can be compensated for by reducing the time bet wee frames.

In order to show this result we prove that if the diagonal terms of t e [d,,] m;trix Mil
* llicient ly small compared to the off diagonal terms, then one we can choose tle paramit, ,r, ,d

le system such that it will always converge to the correct soluiii o . At tit, i nel ,f tie se( ti,,n.

will usev thii and other results to explain how choices of paraimt ers were uiad,, iri mlhi, Wrk.

We will first shov however, that the strength of liat (' hes,,.,, ar', iever exact1v 0 I)

1. l it (;in only approach these values arbitrarily closely. lv i tlie proof fo r l his cl lti \,, \%i ll w11,e

provide a dvrivalion of an anal.,tic expression for fle ,,iilt ihriiimhb ,im l it mi,, dt li. it wtork.
. . .L "

.t.

~~~~~~~~~~~.. . .-.- •... .-.. ........ i.. .. ...... ,.. ......._-.,...,75.,.: 7.,. . . _.
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As shown in Section 2, Eq. 2.5 is a Liapunov function for tho qvqtern. Therefore the
solutions of the system are asymptotically stable. It follows that at equilibrium dUi2 /dt = 0 or
from lq. 2.9:

U(j = (B (N - V) - Cdja - A (viCO + VaRw- 2V9a)) (3.1)

whiclh is an analytic expression for the equilibrium solution of the system. The values of Via are
bounded; 0 < ,, < 1 (Eq. 2.3). It follows that the right wing of Eq, 3.1 is bounded from below

and above. Indeed:

-(B (N - N 2 ) - Cdi - 2NA) Uia < r(BN - Cdj). (3.2)

This proves that at equilibrium, 0 < V, < 1, because by Eq. 2.3, V - 1 (0) if and only if
, - +_ (-sc).

The values of Vi, are different than 0 and 1 not only for equilibrium. Indeed, differen-
tiating Eq.2.4 and substituting in Eq. 2.6 yields:

dVj, oaE- - -2AViza(1 - Vi,)- . (3.3)
d-t

It follows that if at 0 < t' < o, Va = 1 (0), then dVa/dt = 0. (One can show that aE/OI,, is
always finite.) Therefore, if at a given instant, Vi, = 1 (0), then it remains there forever.

Let us now state the main result of this section.

THEOREM: For given A and N > 2, if dii < djb, 1 < i,j,b < N, j $ b, then
for any 1 > c> 0, there are B0 > 0 and CO > 0, such that if B > Bo and C > Co, it
follows that at equilibrium 1 - Vii < and V,~ < c.

In th, process of proving this theorem we will provide bounds for AL) and ('O in teirms of 1. the
dala parameters and . We begin our proof with three short lent was.

LEMMA 1: At equilibrium N > V.

'roof:

'tmisid,,r the update Eq. 2.9. This can be written as

-. .... .. .. p.
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d (Uta,/ ) etl' (-A (vICOL + 1 'ROW -2 V,,

,,*+B (N - V) - Cd,,).

If N - V = 0, then Uia exp(t/r) decreases, because the sum of the terms on the right-hand side 4f
3.4 is negative. This implies that Ui, and consequently V,,, and V decrease. The assertioi of th,
lemma then follows from the fact that at t = 0, V = N (see initial conditions in ]-q. 2.11).

LEMMA 2: For given A, if dii < dib, 1 < i,j.b < N, j $ b. Ilhein for any A > 0.
there is Co > 0, such that if C > Co, it follows that at equilibrium Ur,, - UJb > 0T.

Proof:
From Eq. 3.1 one obtains that at equilibrium:

(Ui - Ujb)
- A (VCOL + VIROW - vCOL - b OW

-2V', + 2 Vjb) + C(djb - dii)
> - NA + Cd*,

where d" = min,jb (dib-di,). This inequality holds because 1)y Lemma 1, Vc ° l , + IV]W° w - 21',
A. Let C > Co (a + (NA))/d*, then:

( 1 " - 1136) > ar. (3(i)

LEMMA 3: For given A,C and N > 2, and for any > 0, there is 81) > 0 si h thlat
if II > Bo then at equilibrium N - V < .

Proof:
IVrm Eq. 3. 1 and by Lenima I, the following inequality can he written at eqilii i niun:

> AN + B(N - V) - ('d",
T

wlire d'" = mlaxia d,. Let B) > Bo - (AN + C'd")/. i'len N- < o. This is beca,,. if it,
th,' contrary N - > > t, it follows:

('~~ - (0.

' . , . . I

_ r.." , a .- ,.., ,e-., . ?a..in >7, .--.. .lll-l -. *1 *.*- * * * * -. .. . . . . . . . . .
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, I root Eq. 2.3 this implies that V,, > 1/2 or:

N
2

S> -> N, (3.9)
- 2

which is in contradiction to Lemma 1 and implies N - V < c.

We now proceed with the proof of the theorem.

Proof of the Theorem:

Let

2(AN + Cd--)B > Bo=, (3.10)
C

and

log (((2N - c) (2 (N 2 - N) - C)) /2) + 2ArAN
C > CO 2Ard (3.11)

We want to prove that Ib < ( and Vii > 1 - c. In the first case we will prove a stronger result,

namrely V b < (/(2(N 2 
- N)). Suppose on the contrary that Vjb > /(2(N 2 - N)). In that case

. j= 6

.- and from Eq. 2.1:

I;2 U3 o2(N2 "N) -

. Froni the proof of Lernina 2 and (Condition 3.11, one obtains:

11i -jb 1 og(2N - () (2 (N 2  N) -
TA- (Jj > log( 2 N (3.14)

(oi(bining Eqs. 3.13 and 3.14 and substituting the result into Eq. 2.3 one obtains:

1, I, > 1 - 2"-- (3.15)

oIr

-a . . . . . . . - . o ... - - . .. . . . a * • a a ... '. '
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EV, > N--. (.1(1)2

However,

~,vii + Ej V'1f,. (3.17)

Thus, from Eqs. 3.12 and 3.16 one obtains that V" > N, which is a contradiction to Iemma 1. Thi,
implies Vjb < C/(2(N 2 - N)) < . -

Let us now prove that Vi > 1 - . Because Vjs < /(2(N" -- N )), we obtain

Job < . (3 . 1-

Also, from (ondilion 3.10 and the proof of L.emma 3:
E.

V > N --. (3.1
2

From Eqs. 3.17, 3.18 and 3.19 one obtains:

V > N (. 3.2()

But 'kk 1 , thus: Z-3
V" > N - V-lkk > 1 -(3, 3.1

which is the desired result.

We have shown, therefore, that the network is capable of exactlv solving the corrospwinl( prold.,ii,
for motions smaller than the internal distances of the object. This is particularlv importaint 'mr
non dense objects, i.e. those containing small to medium numtbrs of featiris ( F. lPig. 1). Our
computer simulations confirm this result, and indicate Ahat for ,iich bjc, ls., a i' pr ,TiMuI maIuh 1
is ohtaitiod for complex large motions (Fig. 7).

'he development of the theorem, and other rsmilts, suggest riles '4 lhim!i, fir w
ihnilce of the network's parameters. Consider the energy fu nct on in H1 . 2.5. lr pi .-i

irproportional change of parameters A, B. C and I/A will only sc;le vi shape f . a id h Iii t.1
niot (ha uge thle equilibrium solutions of the system. Also, t lie d.iiaiuics (if iinrec'will iwi
ht changd, hetause a modulation of these parameters will cause an inwverselv p ripiwroil a i,
in A. h',vilng lhe equation of mnotion unmodified. (To niderstand t his cliil Ii( -, , a.sil e I, I

ciinton i-f motion in the form expressed in Eq. 33.) It follows, comiir r to wi;i % ;c n ii id.

%q

• S,

.......................... "°..
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l' lhlpfild t )'ltat IIIe absoluite value (if tHie p)araiieter A is iielevatit: oidy it, rlative 'ati

tI lie ot hiel J);ilii iinot('s miatters. Ini all of our simulations an(] in tle rest of this dliscutssionI. A \v;1,

Set to 1.

A few extra rules of thumb can also lbe derived from our results. Equation 3.10 sulggests
ha~i tlie paramieter B) has to lbe highi compared to A N and Cd . Thle equatioln gives formnulaus fer

how Ia rge B shiould be in terms of thle precision required in t lie prolblemi ((). Equation 3.11 suggests,

li~it (d sliould b~e relatively high complared to A N for sh-ort inot ions. Simiu latiotiis shlowed thati

1 shlould he hligh if the( sy'stem hias to solve ambhiguous situations ;it whiichi multile tinatclie. 5 to ai
qveti featuore are p)ossibHe (Flig. l).

4 The Structural Theory for Apparent Motion

In this work so far, we developed antd a nalvzed a "neu ral- network" implementation of the It iaI

NI aji pi hg 'I ivor 'v. 'I'lie justificat ion for tHie MNiwmi ial Mlappi g Th'eory is based on Ullnmanm's ario Inelt

IN919) thlat the st ruictuore from mot ion p)roce(ss is divided in two stages; first solving thie correspon-

dlelie p)r hlelm I i ci usinmg the correspondednce ilnformation to recover thie :3 1) shiape of objects. Ill

hlis, ,ectli jmtHie sainie mat hemnatical fornilin of thie I)recedhing sections is used, i.e. that of the

ieu ral lit works,", to bring somei suppIort to Ullman 's two-stage hiypothiesis. WVe studyv whetlher

rli-ud tY alone ( tie( basic assunqli )tioll tse(] to recover the ~3 D) st ruc ture from tmotion ) is sufficient

to s-1v I te corresipmlenice Iroblemn (atnd sim ultaneouisly the structure from mtotioni )robleln ) . We

&i111ue Fi'l iit 'in Ilie form tised by UlIlmoan (198 I). We call thle theory 1).- .: on rigidity alone the
. Irciwfit l li Fori1 for applareitt tootion. It, is shiown that fuurt her conistraints a-c usually needled to

lwl'Ill is theory obtailn correct antswers.

4.1 A Network Iniplenientation C

h i tli i secti we (10t do0 [ltIse thie assulni)tion of strict rigidity, but rat her Ulliman 's i ncremiental

rigiilitY vsc ilii. Ii ic hi allows for nton rigid rmot ions (Ullinan . 1984; C rzYwacz and] llildret h. 1986.
I h 7: (Crzvwact. ot ail. 19 87: hildret ii e-t al. 19S7). In the incremtenital rigidity schieme an object
wit I i N fe atutres is described by a miodel (1).y(t).z()) for i =1,.N. ''liex, y complonents are

tlirectlv observable (a-ssumning orthiographic projection) andl thie z components are to be deduced.
.%t 1 0 hie colin points are set to zero. Thenvi, at eac Ii instant, one uises thle previous valutes of

the ., I 0) to calculate th;w new oiev, ztl. Tis calcmlat on ninitnizes deviations- of

11w jr >t~lUv All', betweeni fr -\e I ? tniv hle deli tied as follows. First define L4"(1) bN

L11 (/1 11 t Lr~ t)- III'± ()-~ f 2 (z()- ()2(1.1)

ii. iii-) Ii)[ I .Ill, 1 ti he dw 1)% folve iitlItlel ste ((rsm Tdt('s iotth'cf il l ion >1illI [ f otti-



incremental rigidity scheme, yield the minimal AR. WVe now use the set of IbinarY (orres ponili(o
variables V ta, to define a new matching cost function ER, whose iinirnizal ion is equivalent to i hiat

proposedl by the Structural Theory:

N

To find the correspondence and structure siniultaneously lby using ilc rerleIf t A rigid IlY v. 111111iii11111/4'
Eli with respect to z' and Vi, requiring that all features in the first fraine are inat (led to0 exa, i I
one fea-Lure in the second. The method is similar to the one described for the Mitiiinal NMappilry
Theory. It begins by substituting the EAIM term of Eq. 2.5 by ER Of ]':(1 4.-3. It procelk,] bY
up~dating the Ui, variables (see definition in Eq. 2.4) by using siniultanoslY the, eq oati il (d1

motion 2.6 and

dz' OE

where 03 is a positive parameter of the problem. As in the case of the M11inial Miapping 'hoeor 'v,
E is a Liapunov funiction of the system. This is because for the Structural Theory Eq. 2.7 calli he
rewritten~ as:

dE Ddi~ E 2 aVE~K (l
dt (9i a/a zj'

Out. a0
which together with Eq. 2.8 proves that dE/dt < 0. It follows that also for the St ructural liorv-
the system will stop in a point of the solution space in which the function E is at one of its nlilninia.L

The next section illustrates the results of our sitnduations with the equations of iloti(4i
2.6 amnd 4.4. and compares the results to those obtained for tile Minimial Mapping Theory. It also
dliscusses a theory which is a hybrid between th -Structural and( the Nhiniinal Miapping theories.,
and which seems to give rise to better behaviors than any of the isolated theories.

4.2 Comparison with the Minimal Mapping Theory

I )spit e extensive experimentation with the parameters, tile s iystemi based onl thle St rti( turIi ral lb
ma rel (I * i voverged to the correct answer, unless given a I it of the correct iiia tche (s. I ' I 'Aii 110(%
howover, somne interestin~g mnista kes. It would someotimes choose mnatches an dc1 1()1h val lies for the

feat u ies. in such a way that the mnodel of the object for fte second framne had a limiost lie -,;fl4'
3 D) st riic ure as thle miodel for the first framne, buit suc tn Ihat t he 11101ion bet weeii fra I ie., wvt

U0441l)icatedl. We illust rate this phenoinenon in Fig. 1 0.

Ini thie examplle shown ill this figure. a th ree featulre ob1)ject w&,i rotac iit4roll il] an a\M- i

1winllicular to th' .r - z plane- by :10'. (11 (-a be shown thiat ii; this ( a"' 1i %'- li' v 11; lihtciIit-

(ostI func('t ion of the forill expressed in Eq. 4.3., the y coord inates of tie fea tti'os are i rn'h, 'Va 1t

Ihe prolen. ) When observed fron a bird's eve view filie object looked like a rectangular In
141 sides 3.-1 andh 5 (solid straight. lines of Fig. 10a ). Ile( .coo44rdinates of the thlree eicturei', ill fl"

it I raie where 0.0 arid 4 for featutres A, B and C epc jv'lv ile z, ('44o~ilit' 14[ I 4' , I \
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Figure 10. The errors of the Structural Theory. '[le solid triangles are the bird's eve views of the moving
object. a. shows the first frame and b. the second. The dashed triangle in a. is the triangle computed

by the network implementation of the Structural Theory. The image coordinates of A', B' and C' are the
same as the image coordinates in the second frame of A, B and C, respectively. The curved arrows show

the computed correspondences. The computed structure and correspondences were incorrect. However, if
the computed structure is superimposed on the true structure, while forcing their corresponding corners to
be close, then t hey are shown to be similar (Fig. b). Thus, such a theory may be able to compute a rough
estimate of the structure of an object, without having to solve the correspondence problem.

features were 0,3 and 3. The rotation was anticlockwise (with feature A fixed), when observed
from the bird's eve view. The solid lines of Fig. 10 b -,how the position of the object in the second
fra in frin I his view. 'le values of x were directly measurable by the observer. We assumed that
the observer knew the values of z in the first frame. The values of z for the second frame an(l
t e values of the I,,, were calculated by integrating the equations of motion 2.6 and 4A.-. (The

l);traiiieters used ii this display were A = 5000, D = 10000, C = 10, r = ],A = 50 and 3 = 10. The
iititial values of the z coordinates in the second frame were close to zero, but randomly chosen. In
this exaiipl, these coorditates were 0.01, -0.01 and 0.005 for features A, B and C, respectively.)

A bird's eve view of the solution is shown in the dotted lines of Fig. 10a. The curved
arrows indicate th, inotions observed (as shown by the correspondence variables, V,"). Note that
theso mot ions were incorrect and very complicated. The 3-D st ruct ure of the new triangle, however,
was not very diferent from the original one. The (lotted lines of Fig. 10 b represent the dotted
triangle of Fig. 10 a, but with the sides rotated and "mirror imaged". These transformations were
done in such a way that the matched corners in the two frames were now close in space. Note the
siiil;iFit ' of structiures betweeni the original and computed triangles. This indicates that altlough
th, "neural ntwork" implementatioti of the Structural Theory is unable to compute the matches

eS



correctly, it may be used in some sit uations to b~ypass the correspondence jprollel altogcot herr. i-I
make a fast (but rough) estimation of filie paratititers of 3 1) striict fire of thev ol jer I

The failure of this svsten to ob~tin thle correct iorrespotitleiices (l~, it tImpiK;.,

the Structural TIheory would fail for ativ imtplcmeltion. ()in thle cont rar-Y. for nt 'riid oi)-

* an exhaustive search based on the Structural TheoryN wouild give the correct answer. VTis is h'c;i-

the right correspondences and structure of the object is oft en the oi], sit tia ion Nvr here llonttr

- func tion is exactly 0. The above failures. however, are ho e taken as a se r;i is handic a p of 111

SSt ruct ural T heory. It shows that the solu tion space exploredh hy h16" wi. oIIp1--:\ i. 1 i

many local nliiurlia. This argu ment shows that only very ela borato, an l tlireff 11 f.I 1w n. in i>~ (-,Ii

find the global minimum. The Minimal mapping Theory, on, thw other hail, A'tioiii yi vi YI MI h,

- ' ~correct ma cites for translations or relatively short rot at iois, inldepeidh (ltlv of t ie ii ImlfI ei t a1G n.

Aswe havye shownt, however, for the M inimnai Ma ppinhg T heory at very' faIsI lniu rAInew itulVl;I,

itentation is always possible. The evidence that apparent motioni ill humnls i, IIilIilihs-t ll

- mu ~i nimal mnapping. therefore, seems to point on t. that their solution of th le rIll (in corres polld1 w'ic,

Iiroulemu gives up p~recision under all circutmstanices Ii favor of speed.

We call tie attention to the fact t hat the comlploxi I I if Owli >oI liol space IlI11

t tri itl lirtIieor ,v is not d ue to Ithe ufse of two PquiatI ons of mlot ioni j. 2.6~ a fill -1. 1. iIfii ,Iioi'

il y1 olif' lisff bY the MinimalI M appi ng Ter.''lhis cin i)1ix I tY I s b eca isf fff I lh vltli ('Oi 1 ihcaIf d
If,;fId(iIcv (if ['/ oil thle correspondfenice variables, V,,. thtan of Ff, compjiti lqs. 2.1 and .1).

II l"Ii t. (;/'twi ( 19-86) has (demnlstratfed that problems simnilar to thiose ili Ii. did II Fig. It) ftill
oxt !'12 It \frsifli of the Strinural Theory. Ili this versioll a ,,,archi for iflh xalii' (oqult I

,dII i.) H IA) is noit liecessamy

llf-ihlfs hifing able to bypass the correspolirellie lrolilell iltiir sofmif cir riltist a Ic

% I til il Sructural Theory may also t urn ont to be useful ill rases for which lii lilinal mta ppilng

- fil> SIlch i -i atiuts mila ilicludle large rotat 10115 andl miotionl of fe.at tires ;ia.st oilidirig hioiltlldrlf.

all I W1.t fomlid ill 0our sliuiilations that a theory that is ai hvhr~l litwfIoon the St'Ir uiir;dI ;iid

'.1 iinima %laippintg theories cali often handle these sit Ilatilf>. Othr iliI liltt f f I IX 11rill14

h'- , drv14 1,iY uh vInclud~ing i,th thf L, A, anld the 14I tormts ill tilie eli fl. \' full'tioIl I. - (

i*i I . I-rid t ifory pho vedl to be thli best Of hI~f 1i \ill hIs, lie, If Ad" to (I i l i i 1ll], ilf il

thd~e , trt, ie, clrrf'slond(hes oif thf featlirf's, ill mlotioin anif their ilei I, We coniuliof t li

ipiwiL' the rI-gilitv aimphlljti(Il used( by the St riirt ilal hiellrY has seri i irwhicks wli wsod(

,# ' lvv~ t hI ii re (, ilind ncf pirob~letm , it tilf Ii sigiific;itt 11. AIll 11li i- d Ill (((lliiilil ith?

* ~ 1 ill u1a-ilt Xwllks. (hr empi~hais has 1101 llif lk .1. 1., 1 .IIlI \ i Illifilw, iOw

(, I[.( If' itt Ilill t (If th i lm,11( ra thier tharn o i rit ork- th,ji tfo, n Ifi it lilt 'Kb N\-# hoe xki l d

Tl 'i f vl a. \\e or [~i~Isitf tfii 'rt2(l ma'si theoi ryt oI Iis hi \l( 1t K NII K .114 d i tillelil V ilt lil,

p.vd1'i o v rv ,, v u t o ~ , lfk l . N '1\f

\%u IfiIItt ef'.11CC I(s o id m a l e l d - A l l, 1 111
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t-1. 1"'i 'l T istheorv h 'aved poorly hut a hybrid version incorpora ligp - oII I" 1''t I ,(f Ih'. \hi ilrn;1l

Mappiug Theory worked well.

An aim of our work was to see if rigidity alone was sufficient to solve the correspondenco
problem. There are a numbter of ways that rigidity could be used and it is infeasible to test all of'
them. Instead we contentrated on a method based en the incremental rigidity scheme (1Ulintan.
1981), and conjectured that other schemes would give similar results. Our results muggest that
rigidity alone is unable to solve the correspondence problem, but there are two reservations. Firstly
it is possible that other methods of using rigidity may give better results. Secondly it is possible
that the fault lay in the use of our choice of network and that other implementations would succeed.
To check this second possibility we designed a scheme based on simulated annealing (Kirkpatrick
et al.. 1983). Trial runs indicated that the convergence of the Structural Theory (lid not improve.
The energy function seems to have a number of minima of similar depth and so no method, even
sinulaled annealing, will succeed in a reasonable time.

There are some simple psychophysical experiments that could be done to see if rigidity
i-, iid for correspondence. Consider a triangle in space lying in a plane along the fine of sight of the
viewer so that the projections of the three vertices onto the image plane lie in a straight line. As the
Iti; ngle is rotated the order of vertices in the projeclion will reverse. Ini these situations milnimal

mapping will give the wrong answer. The modified version of the Structural Theory (including
tin ima iapping terms) will give the correct answer. Informal psychophysics suggests that human
perception may be wrong in this case, but the results are not conclusive.

e were able to prove that our minimal mapping network converged to the right answer
"*i only if the displacement of the features between frames was smaller than the average distance

bet ween features. There are probably few situations for which minimal mapping wculd give the
correct answer if the displacement of features is larger than the average distance between them. It
would be interesting to devise examples of these situations and do psychophysics experiments.

Minimal mapping is an elegant theory that gives a good description of a range of physi-
cal phienomena. Recently, however, two psychophysical effects have been discovered that the theory
cannot ac,ount for without modifications. The first is motion ineri'a (Ramnachandran and Anstis

IN83.1987; Eggleston. 1984; Grzywacz, 1987). This shows that the matching of features betweeti
two frames is influenced by their matching in previous frames; features have inertia and tend to
pr,,fe'r matches in the directions in which they have been moving. Ini contrast the Motion captur,
effect. ca lie dra matically illustrated by lanachandrai's mioving leopard analogy. If the boundar iay

f th, lheopard is invisible then the spots on the leopard are matched to their nearest neighbor. If
,lie b ntarv is visible then it "captures" the spots and their itatthes are different. Effects like

11w. can be deminstrated by experiments in which (lot stimuli are captured by surrounding coi-
t,,uts. Iioving periodic gratings or other (lots (Mackay, 1961: Rarnachandran and Anstis. 1983.b:

air iichiatdran irid Inada. h9S5: Williams. Philip and Sektiler, 198(i). These experiients show
ht i6t titii1al mapping has limitatims and soine modifications are needed.

'lhe tiaiu reason for usiig a iiassively parallel network is the reduction iii conputati(on

Iiii'. li, viantage arises because mnlv problhnis are parallelizabhl, and with such a network we
can ,'xpiitit lh,, trade offl bet ween the number of elements and the titme of computation. Current ly.

r,.e,,et il i. being donw to cotstruct electroic;l devices that implement such networks. This massive

.-i. Hr;dll,,nli ni nv a]lst lead tIo fault tolerance. Networks are attract iv because t hey offer a iiet hod of

. ..
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I urning a problem with discrete elements into one wit i continuous ones, ther(bY ita ki ni it I i,,i It I,

to solve a decision problem with an analog machine. Another method of turninig a discrete prI,liii

into a continuous one has been described by Marroquin (Marroquin, 1987).

A further advantage of networks of this type is their possible bioloi(cl plarr-ibiljtv

This argument, however, must be used cautiously. The network is composed of sirrll,, el,'(tri, i

components that could simulate the dynamics of lhe membrane of sim)le neurons. Nioreoxrh

is similarity between the sigmoid input-output relations of the network elemrnts ano III, w,h;i vi,

of tire synapses of neurons. However there are a number of important diflrernce,: real nourol ai,

very complex (von Neumann, 1958; Koch et al., 1982; ('rill and Schwinrdt, 1!)A3: Kutler o, al.. I 1,I

and certainly do not have symmetric synaptic connections. Moreover the brain i, not one l;ir

homnogoneous network and instead has many different levels of organization. The intorconn cl io -

between neurons are constrained to be local, although well defined fiber tract s exi., for long di.
communication. Therefore uetworks of the type we have boon con.sidering ca()IIn ,lv inodl I t),

regions of the brain.

Our networks make fast decisions, but not always the right ones. It can be argi,,

that sometimes it. is more iml)ortant to obtain fast approxiniate solutions to prollins rat herhIr

slow accurate ones. This is curiously similar to the arguients of Simon in decision th,r *rv (Si mi..

1979). The claim being that a decision maker should, and in practice does, nak, quick apli)roximal r
decisions rather than being perfectly rational and finding the best possible decision regaidlv, ,I

thte time it takes to compute it.
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